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Or simply a QCD effect?
ATLAS-CONF-2014-033  (8 TeV WW measurement)

Both ATLAS and CMS experiments impose jet-veto in their analysis 

Need a better understanding of jet-veto.  
P. Jaiswal and T. Okui, An Explanation of the WW Excess at the LHC by 

Jet-Veto Resummation, [arXiv:1407.4537].



Or several QCD effects ?

NLO predictions as much as 30σ away from LO central value.  
Very poor perturbative convergence? Or underestimated scale uncertainties?

Need a better understanding of scale uncertainties.  
P. Jaiswal, A New Perspective on Scale Uncertainties for Diboson 

Processes, [arXiv:1410.xxxx].

2

200 250 300
M [GeV]

0

200

400

600

d�
/d

M
[fb

/G
eV

] WW LO

NLO

200 250 300
M [GeV]

20

40

60

80

d�
/d

M
[fb

/G
eV

] ZZ LO

NLO

200 250 300 350 400
M [GeV]

50

100

150

d�
/d

M
[fb

/G
eV

] WZ LO

NLO

FIG. 1: Di↵erential cross-sections at LO (blue band) and NLO (red band) are shown for W+W� (left), ZZ (center) and
W±Z (right) production at

p
s = 8 TeV LHC run as obtained from MCFM. The uncertainty bands follow from varying the

renormalization and factorization scales as M/2 < µr = µf < 2M . Contributions from gluon-fusion channels are not included.

in Fig. 1 are obtained by varying the renormalization
scale, set equal to the factorization scale (µ = µ

r

= µ

f

),
as M/2 < µ < 2M .1 Contrary to the naive expectations,
the NLO perturbative corrections with K-factors in the
range 1.4–1.7 [36] far exceed the scale uncertainties. If
this scale uncertainty estimate is to be taken seriously,
the NLO predictions are as much as ⇠ 30� away from
their corresponding LO vales, suggesting that the per-
turbation theory is very poorly converging.

We argue that there is a second source of scale uncer-
tainty which has not been considered in the literature.
If the scale µ is allowed to be complex-valued, there is
an additional parameter that must be considered for esti-
mating the scale uncertainties, namely the complex phase
of µ2. In fact, the logarithms in the higher-order correc-
tions have a branch-cut along the negative real axis, so
that µ

2
< 0 is preferred over µ

2
> 0 to minimize log-

arithms. This is slightly problematic though since the
PDFs are necessarily evaluated at µ2

> 0 leading to large
⇡

2 terms when the logarithms are squared. Summation
of ⇡2 terms has been known for a long time [55–58], and
has been recently applied to the case of Higgs production
at the LHC [59]. ⇡

2 resummation calculations for dibo-
son production have been performed in the context of
threshold resummation for W±

Z and ZZ channels [52],
and jet-veto resummation for W+

W

� channel [50].

The aim of this paper is to show that the variation in
the phase angles of the complex renormalization scales
is essential in order to estimate the true scale uncertain-
ties. Just as the variation in the factorization scales is
governed by the evolution of the PDFs, the variation of
the phase angle will be governed by a di↵erent renor-
malization group (RG) equation, which we obtain using
the formalism of soft-collinear e↵ective theory (SCET)
[60–65] by generalizing the concept of ⇡2

-resummation,
where the phase angle is fixed to (�⇡+0+), to arbitrary
phase angles. While we explicitly focus on heavy vector-

1 Varying the scale by factors of 1/2 and 2 around a central value
is the standard convention followed in the literature.

boson pair production, our scale variation technique can
be extended to any other process once its RG equation
is known.2

This paper is organized as follows. In Section II, us-
ing the SCET construction for diboson production, we
demonstrate that complex-valued scales, not only arise
naturally in radiative corrections, but are also associated
with large perturbative corrections. In Section III, the
large perturbative corrections arising from the complex
phases of the scales are resummed to all orders in per-
turbation theory for W

+
W

�, ZZ and W

±
Z processes,

including gluon-fusion production channels, allowing us
to study scale variation for complex scales. Finally, in
Section IV, our scale variation technique is applied to di-
boson processes, and numerical results for the diboson
production cross-sections are presented for

p
s = 7, 8, 13

and 14 TeV LHC runs.

II. COMPLEX SCALES AND LARGE
PERTURBATIVE CORRECTIONS

Any cross-section measurement at the LHC is char-
acterized by a process-dependent hard-scale and one or
more measurement-kinematics dictated soft-scale(s). For
example, the hard-scale for diboson production is the in-
variant mass of the boson-pair, M and the soft-scale is
⇤
QCD

for an inclusive measurement while jet-p
T

mea-

surements introduce another intermediate soft-scale, pjet
T

.
It is well known that the presence of multiple scales in
the theory can lead to large logarithms of the ratio of the
scales, which can render the perturbation theory invalid.
E↵ective field theories, on the other hand, are adept at
dealing with the problem of multiple scales by renormal-
ization group (RG) evolution to a single scale, e↵ectively
providing a powerful technique to resum the large loga-

2 Our analysis is trivially extended to a class of processes which
involve colorless final states such as Drell-Yan, as these processes
satisfy the same RG equations.

M/2 <  (μ = μf = μr) < 2 M

WW @NNLO : 5-6 % enhancement w.r.t NLO+gg  at 7/8 TeV LHC.    
[arXiv:1408.5243] 
Similar enhancement from `NLO+π2 resummation'. 
What are the scale uncertainties and do we trust them? 
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Jet-Veto and Large Logs
Part - I



Jet-veto example : no `jets’ with pT > 25 GeV allowed  
Jet-veto        ⟹         Many scales      ⟹     Large Logs

Jet-Veto : Origin of Large Logs

Minimize logs from 
virtual diagrams.

Minimize logs from 
real diagrams.

WW + 0 jet measurement :                                         
Two scales appear : MWW  and pTveto                                                

☛ 2 possible choices : μ ≈ MWW  or μ ≈ pTveto ?? 

Inclusive WW measurement :     
Only one scale appears : MWW                                                                      
 ☛ Obvious scale choice : μ ≈ MWW .   [μ= μf= μr]



Inclusive NLO K-factor ≈ 1.6 

0-jet bin, K-factor ≈ 1.1 

Disagreement at low pTveto for 
different scale choices.  

Agreement for pTveto ≈ 25-30 GeV 
and reduced scale uncertainty!!  

Good perturbative convergence …. ?                                             
….or large log artifacts? 

Fixed Order Calculations (pp ➜WW)
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Fixed Order Calculations (pp ➜WW)
σ⩾0 ≈ σB [1   +  αs    + αs2 + … ] (Large K-factor) 

σ⩾1 ≈      σB [ αs (L2+L+1) + αs2 (L4 +L3+L2 +L+1) + … ]  (Large  logs) 

σ0 =  σ⩾0  - σ⩾1  (Large cancellations)
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How to deal with accidental 
cancellations?  

Treat scale uncertainties in σ⩾0 
and σ⩾1 as uncorrelated.  

Large scale uncertainties in      
0-jet bin become evident. 

 . I. W. Stewart and F. J. Tackmann, [arXiv:1107.2117].      



Jet-Veto and Large Logs: 
The problem of many scales

A well known and understood problem in EFTs 
(Effective Field Theories)   

EFTs can provide answers on how to  resum 
the large logs.



Resummation in 
Effective Field Theories

Part - II



W

Example : Fermi’s 4-fermion interaction 

Two scales in the problem : 

 Λ : scale below which EFT is valid. 

mf : scale at which precision measurements are made
Origin of large logs : 

Tree level :                               One-loop :  

Large logs for μ ≈ mf (the measurement scale). 

How does EFT resum the large logs?

Integrate out W Effective interaction



W

Example : Fermi’s 4-fermion interaction 

Resummation of logs in EFT 

accomplished through RG running of 
the coefficient  c(μ) to the desired scale 
(μ = mf).  

Initial condition for c(μ) : Determine 
c(μ= Λ) by matching to the full theory. 
No large logs in this step because μ= Λ .

Integrate out W Effective interaction

μ = Λ

μ = mf

c(μ)

Example : Fermi’s 4-fermion interaction 



Effective Field Theories for the LHC
to describe QCD interactions

Example : Inclusive Hadronic Cross-sections
Two scales in the problem : 

Hard scale, μh : associated with the hard interaction, for 
example  invariant mass of W-pair for WW production.  

Soft scale, μs : scale of the hadronic masses/ jet 
masses / ΛQCD / the scale at which PDFs are measured. 

Partonic 
cross-section PDFs



Effective Field Theories for the LHC
to describe QCD interactions

μ = μh

μ = μs

f(μs,μ)

Example : Inclusive Hadronic Cross-sections

Logs : 

No large logs at μ = μh  
!
!
!

Simply evaluate 
partonic cross-section 

at μ = μh

large logs at μ = μh  
!
!
!

RG evolve PDFs from  
μ = μs  up to μ = μh . 
(DGLAP evolution)  



Towards EFT for Jet-Veto Cross-sections

Quark Virtualityμ = μs μ = μh

Inclusive

DGLAP

Jet-Veto

μ = pTveto

?

DGLAP SCET



μ = μh

μ = μs

B(μs,μ)

Soft Collinear Effective Theory
Describes quark `jet’ with pT ~ pTveto  

Upshot : RG evolve everything to a common scale (μ = pTveto)
2

Logs : 

evolve from 
μh  to pTveto

evolve from μs  
to pTveto 

(modified DGLAP)

no large logs 
present but 

important finite 
contributions

μ = pTveto

Wilson 
Coefficients

Beam 
functions

collinear 
anomaly C(μh,μ)



Complex Scales, Large Logs 
and Scale Uncertainties

Part - III



Origin of Complex Scales

Logarithms in Wilson coefficient, C(μ) :

[TBD] A New Perspective on Scale Uncertainties for Diboson Processes
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The electroweak diboson production cross-sections are known to receive large radiative corrections
beyond leading-order (LO), approaching up to ⇠ 60% at next-to-leading order (NLO), compared to
the scale uncertainties which are in the range 1-5% at LO. If the scale uncertainties are assumed to
be correct, the NLO predictions are as much as ⇠ 30� away from their LO counterpart suggesting
a very poor convergence of the perturbation theory. In this paper, we show that there is a second
source of scale uncertainty which has not been considered in the literature, namely the complex
phase of the scales, which can lead to large perturbative corrections. Using the formalism of soft-
collinear e↵ective theory, we resum these large contributions from the complex phase, finding that
the scale uncertainties are grossly underestimated at LO using traditional approaches. Even at NLO,
we find that the scale uncertainties are marginally higher than previously estimated, depending on
the choice of scale. Using our method of scale variation, the compatibility of LO and NLO results
within the scale uncertainties is vastly improved so that the perturbation theory can be relied upon.
This method can be easily extended to beyond NLO calculations as well as other LHC processes.

I. INTRODUCTION

A precise understanding of the electroweak gauge bo-
son pair-production at the LHC is critical for several rea-
sons. First and foremost, many of the diboson processes
are dominant backgrounds to Higgs production and its
subsequent decays to Standard Model (SM) particles. A
good understanding of the diboson background is there-
fore crucial in the measurement of the Higgs couplings
to the SM particles. Secondly, diboson processes consti-
tute an important test for the electroweak sector. And
finally, diboson processes are often backgrounds to many
new physics processes, making it challenging to distin-
guish one from the other.

In this paper, we focus on heavy electroweak vector bo-
son pair-production channels, W+

W

�, ZZ and W

±
Z,

owing to their similar kinematics. The cross-sections
measured by the ATLAS [1–6] and the CMS [7–11] collab-
orations in these channels at

p
s = 7 TeV and 8 TeV LHC

runs are compatible with the theory predictions within
2�. Three measurements where the discrepancy exceeds
1� level are the W

±
Z measurements by CMS and the

W

+
W

� measurements by both ATLAS and CMS col-
laborations. The discrepancy in the WW channel is par-
ticularly compelling given that both ATLAS and CMS
experiments observe an excess of ⇠ 20% over the SM the-
ory prediction, which has fueled speculations that new
physics could be hiding in the W

+
W

� measurements
[12–19]. In order to test the possibility of new physics
mimicking the SM background, a precise theoretical un-
derstanding of the higher-order corrections to the SM
diboson production is essential.

The study of higher-order corrections to diboson pro-
duction has a long history, with the first NLO QCD cor-
rections to W

+
W

�, ZZ and W

±
Z channels computed in

[20, 21], [22, 23] and [24], respectively. Leptonic decays

of dibosons without spin-correlations was studied in [25].
One-loop helicity amplitudes for leptonic decays of vector
boson pair were computed in [26], allowing for complete
NLO computation in [27, 28]. TheW+

W

� and ZZ cross-
sections also receive contributions from the gluon-fusion
channel, which although formally NNLO, can be signif-
icant owing to large gluon parton distribution functions
(PDFs) at the LHC. These corrections were calculated in
[29, 30] with the corresponding leptonic decays included
in [31–35]. The complete NLO calculations including lep-
tonic decays, spin-correlations and gluon-fusion contribu-
tions, for all diboson channels, was presented in [36]. Re-
cently, electroweak calculations have also been considered
For W pair-production [37, 38], and for ZZ and W

±
Z

production [39, 40]. NLO QCD corrections to W

+
W

�

and ZZ production with one jet have been computed
in [41–43] and [44], respectively, while W

+
W

� + 2 jets
calculations were considered in [45, 46]. Transverse mo-
mentum resummation e↵ects in diboson production have
been studied in [47–49], while a jet-veto study forW+

W

�

channel was presented in [50]. The threshold corrections
arising from soft-gluon resummation were calculated in
[51, 52]. Finally, the NNLO QCD corrections to W

+
W

�

and ZZ have been recently computed in [53] and [54].

Every higher order QCD calculation discussed
above includes powers of logarithms of the form
log

⇥
(�M

2 � i0+)/µ2
⇤
where M is the invariant mass of

the diboson system and µ is the factorization scale, which
is also the scale at which the PDFs are evaluated. Given
that µ dependence of the cross-sections is primarily con-
trolled by the logarithmic terms, µ ⇠ M seems to be
a reasonable choice to minimize the higher order cor-
rections. Further, given that physical observables are
µ-independent, one can estimate scale uncertainty in the
cross-sections by varying µ. The scale uncertainties in di-
boson invariant mass distributions at LO and NLO shown

Matching of SCET to QCD at μ = μh 
Choice of μh?       μh = M  minimizes logs…. 
….except that branch cut ⇒ - i π factors so that double logs produce 
π2 factors. 
 Motivates choice of μh in the complex μ2 -plane, e.g.  μh2 ≈ -M2

p p → V V’   , where V ∈ { W, Z}
Analogous to jet-veto cross sections, Inclusive cross sections :

PDFs Soft FunctionWilson Coefficient
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problem: the hard scale, µh and the factorization scale,
µf.4 Given that µh is complex-valued, the RG evolu-
tion of the hard coe�cients can be realized as a two
step process, C(µh) ! C(|µh|) ! C(µf). In this pa-
per, we will consider inclusive cross-sections so that it
is reasonable to set µf = |µh| ⌘ µ. For less inclusive
measurements, such as imposing jet-veto [50], we have
µf 6= |µh| so that the evolution C(|µh|) ! C(µf) must
also be considered. Nevertheless, the first RG running,
C(µh) ! C(|µh|) essentially decouples from the second
RG running, C(|µh|) ! C(µf), so that our analysis can
be trivially extended to less-inclusive measurements.

Let us define µ ⌘ µf = |µh| and µ

2
h = µ2

e

i⇥, where ⇥ 2
(�⇡,⇡) is the complex phase angle. In the last section,
we showed that the logarithms L

M

(µh) present in the
hard matching coe�cient are minimized for µ = M and
⇥ = �⇡ + 0+. While the e↵ective field theory dictates
the choice of the hard matching scale to be the scale of
the hard interaction, there is nonetheless an ambiguity
associated with the choice of the hard scale parameters,
µ and ⇥, since the contribution of non-logarithmic terms
in Eq. (4) maybe sizable. On the other hand, total cross-
section, being a physical observable, is independent of the
choice of matching scale. Therefore, this ambiguity in the
choice of matching scale parameters should be reflected
as scale uncertainty in the theory prediction.

Variation of the hard scale in the complex µ

2-plane is
shown in Fig. 2, where the shaded annulus corresponds to
the region M/2 < µ < 2M and �⇡ < ⇥ < ⇡. If the non-
logarithmic terms in Eq. (4) were completely dominant
over the logarithmic ones, there would be no preferred
value of ⇥. On the other extreme, if logarithmic terms
were completely dominant, ⇥ = �⇡ + 0+ would be the
ideal choice. Numerically, for the diboson processes, we
find that ⇡

2 terms arising from the logarithms account
for nearly a half of the total NLO corrections, so that the
situation is somewhere in between. With these consid-
erations in mind, to estimate the scale uncertainties for
diboson processes, we select the region �⇡ < ⇥ < 0 as
indicated by the green hatched region in Fig. 2. This is
to be contrasted with the fixed-order calculations which
have ⇥ = 0 on one hand, and ⇡

2-resummation calcula-
tions which select ⇥ = �⇡ + 0+ on the other hand.

For the process qq̄

0 ! V V

0, the scale dependence of
the hard coe�cients in Eq. (3) follows from that of the
Wilson coe�cients, which in turn satisfy the following
RG equation :

µ

dC̃µ⌫(µ)

dµ
=

✓
�cusp
F L

M

(µ) + 2�F

◆
C̃

µ⌫(µ) (5)

4 More generally, one can consider a soft scale µs ⇠ ⇤QCD but we
assume that the evolution from µ = µs to µ = µf is accounted
by the PDF running. This is true when the ‘threshold correc-
tions’ from soft-emissions are small, which has been shown for
the diboson processes [51, 52].

Im(μ2)

Re(μ2)0

FIG. 2: Variation of the hard scale µh is shown in the complex
µ2-plane with a branch cut along the negative real axis. The
orange shaded region satisfies M/2 < |µh| < 2M but only the
hatched region of the annulus is considered for scale variation.

where �cusp
F is the cusp-anomalous dimension which re-

sums double logarithms while �F is the anomalous dimen-
sion which resums single logarithms. Both �cusp

F and �F

implicitly depend on µ through ↵

s

. The anomalous di-
mensions appearing in the RG equation above are univer-
sal for class of processes which have colorless final states
(not counting emissions from initial state quarks), and
therefore identical for all diboson production processes
and Drell-Yan.
A subtlety that emerges from the RG running between

the scales µh and µf is that the strong coupling ↵

s

(µ)
must now be defined in the complex µ

2-plane with a
branch cut along the negative real axis. As long as
the contours of integration are su�ciently away from
the Landau pole in the complex µ

2-plane, ↵
s

(µ) is well-
defined along such contours. Using the definition of QCD
beta function �(↵

s

) and performing contour integration,
a particularly useful result can be obtained [59] :

Z
↵s(µh)

↵s(µ)

d↵
s

�(↵
s

)
=

i⇥

2
(6)

For the purpose of power counting in ↵

s

, we shall treat
|⇥| ⇠ O(↵�1

s

) although numerically ⇥ can also be zero.
Eq. (6) allows us to compute the complex couplings
↵

s

(µh) in terms of the real couplings ↵

s

(µ), where the
latter can be computed in a standard way. At NLO, we
have the following relation :

↵

s

(µ)

↵

s

(µh)
= 1 + ia(µ)

⇥

⇡

+
↵

s

(µ)

4⇡

�1

�0
log


1 + ia(µ)

⇥

⇡

�
+O(↵2

s

)

(7)

where a(µ) = �0↵s

(µ)/4 and �0 = 11/3C
A

� 4/3T
F

n

f

with C

A

= 4, T

F

= 1/2 and n

f

is the active number
of flavors which we take to be five. Numerically, since

Large logs from Complex Scales
Logarithms in Wilson coefficient, C(μ) :
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The electroweak diboson production cross-sections are known to receive large radiative corrections
beyond leading-order (LO), approaching up to ⇠ 60% at next-to-leading order (NLO), compared to
the scale uncertainties which are in the range 1-5% at LO. If the scale uncertainties are assumed to
be correct, the NLO predictions are as much as ⇠ 30� away from their LO counterpart suggesting
a very poor convergence of the perturbation theory. In this paper, we show that there is a second
source of scale uncertainty which has not been considered in the literature, namely the complex
phase of the scales, which can lead to large perturbative corrections. Using the formalism of soft-
collinear e↵ective theory, we resum these large contributions from the complex phase, finding that
the scale uncertainties are grossly underestimated at LO using traditional approaches. Even at NLO,
we find that the scale uncertainties are marginally higher than previously estimated, depending on
the choice of scale. Using our method of scale variation, the compatibility of LO and NLO results
within the scale uncertainties is vastly improved so that the perturbation theory can be relied upon.
This method can be easily extended to beyond NLO calculations as well as other LHC processes.

I. INTRODUCTION

A precise understanding of the electroweak gauge bo-
son pair-production at the LHC is critical for several rea-
sons. First and foremost, many of the diboson processes
are dominant backgrounds to Higgs production and its
subsequent decays to Standard Model (SM) particles. A
good understanding of the diboson background is there-
fore crucial in the measurement of the Higgs couplings
to the SM particles. Secondly, diboson processes consti-
tute an important test for the electroweak sector. And
finally, diboson processes are often backgrounds to many
new physics processes, making it challenging to distin-
guish one from the other.

In this paper, we focus on heavy electroweak vector bo-
son pair-production channels, W+

W

�, ZZ and W

±
Z,

owing to their similar kinematics. The cross-sections
measured by the ATLAS [1–6] and the CMS [7–11] collab-
orations in these channels at

p
s = 7 TeV and 8 TeV LHC

runs are compatible with the theory predictions within
2�. Three measurements where the discrepancy exceeds
1� level are the W

±
Z measurements by CMS and the

W

+
W

� measurements by both ATLAS and CMS col-
laborations. The discrepancy in the WW channel is par-
ticularly compelling given that both ATLAS and CMS
experiments observe an excess of ⇠ 20% over the SM the-
ory prediction, which has fueled speculations that new
physics could be hiding in the W

+
W

� measurements
[12–19]. In order to test the possibility of new physics
mimicking the SM background, a precise theoretical un-
derstanding of the higher-order corrections to the SM
diboson production is essential.

The study of higher-order corrections to diboson pro-
duction has a long history, with the first NLO QCD cor-
rections to W

+
W

�, ZZ and W

±
Z channels computed in

[20, 21], [22, 23] and [24], respectively. Leptonic decays

of dibosons without spin-correlations was studied in [25].
One-loop helicity amplitudes for leptonic decays of vector
boson pair were computed in [26], allowing for complete
NLO computation in [27, 28]. TheW+

W

� and ZZ cross-
sections also receive contributions from the gluon-fusion
channel, which although formally NNLO, can be signif-
icant owing to large gluon parton distribution functions
(PDFs) at the LHC. These corrections were calculated in
[29, 30] with the corresponding leptonic decays included
in [31–35]. The complete NLO calculations including lep-
tonic decays, spin-correlations and gluon-fusion contribu-
tions, for all diboson channels, was presented in [36]. Re-
cently, electroweak calculations have also been considered
For W pair-production [37, 38], and for ZZ and W

±
Z

production [39, 40]. NLO QCD corrections to W

+
W

�

and ZZ production with one jet have been computed
in [41–43] and [44], respectively, while W

+
W

� + 2 jets
calculations were considered in [45, 46]. Transverse mo-
mentum resummation e↵ects in diboson production have
been studied in [47–49], while a jet-veto study forW+

W

�

channel was presented in [50]. The threshold corrections
arising from soft-gluon resummation were calculated in
[51, 52]. Finally, the NNLO QCD corrections to W

+
W

�

and ZZ have been recently computed in [53] and [54].

Every higher order QCD calculation discussed
above includes powers of logarithms of the form
log

⇥
(�M

2 � i0+)/µ2
⇤
where M is the invariant mass of

the diboson system and µ is the factorization scale, which
is also the scale at which the PDFs are evaluated. Given
that µ dependence of the cross-sections is primarily con-
trolled by the logarithmic terms, µ ⇠ M seems to be
a reasonable choice to minimize the higher order cor-
rections. Further, given that physical observables are
µ-independent, one can estimate scale uncertainty in the
cross-sections by varying µ. The scale uncertainties in di-
boson invariant mass distributions at LO and NLO shown

Matching scale μh2 complex-valued. 
But PDFs evaluated at factorization scales which are real :  μf2 ≈ M2 
Hierarchy of scales in the complex μ2 -plane  
⇒ Large Logs  log(μh2/μf2) 

Phase of μh2  : Θ 
log(μh2/μf2) = i Θ 
If Logs dominant :  Θ = - π 
If non-Log terms dominant, no preferred value of Θ. 

RG equation for C(μ)  known  ⇒  Evolve from μh2→μf2 ⇒ Resum Θ terms. 

Vary   :  -π < Θ < 0   similar to M/2 < |μh| < 2 M 
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FIG. 3: Di↵erential cross-sections at LO (blue hatched bands) and NLO (red hatched band) are shown for W+W� (left), ZZ
(center) and W±Z (right) production at

p
s = 8 TeV LHC obtained from our scale variation method in the complex µ2-plane

as described in the text. Contributions from gluon-fusion channels are not included.

the fixed-order NLO results, before implementing resum-
mation. We therefore arrive at the following formula for
the process qq̄0 ! V V

0 at NLO:

d� NLO

dM
(⇥,µ,M) = |U(⇥,µ,M)|2


d� NLO

dM
(µ,M)

� �F
0⇥

2
↵

s

(µ)

8⇡

d� LO

dM
(µ,M)

�(13)

where, all quantities in the square bracket are computed
using NLO PDF sets. The di↵erential cross-sections on
the RHS of the above equation are again obtained from
MCFM by setting the renormalization and factorization
scales as µr = µf = µ. We are now in a position to
present the numerical results for diboson production us-
ing our scale variation method.

7 TeV 8 TeV 13 TeV 14 TeV

�LO
WW [pb] 33.8± 4.3 41.2± 5.5 82.5± 13.2 91.4± 15.0

�NLO
WW [pb] 45.3± 2.2 55.2± 2.6 109.1± 4.5 120.7± 5.0

�gg
WW [pb] 1.6± 0.7 2.1± 1.0 6.0± 2.7 7.0± 3.1

TABLE I: LO and NLO cross-section predictions for W+W�

production at
p
s = 7, 8, 13 and 14 TeV LHC runs, using

our scale-variation method. The contribution of gluon-fusion
channel is shown separately.

7 TeV 8 TeV 13 TeV 14 TeV

�LO
ZZ [pb] 4.7± 0.6 5.8± 0.7 11.9± 1.8 13.2± 2.1

�NLO
ZZ [pb] 6.0± 0.2 7.3± 0.2 14.6± 0.4 16.2± 0.4

�gg
ZZ [pb] 0.5± 0.2 0.7± 0.3 1.9± 0.9 2.2± 1.0

TABLE II: Same as Table I but for ZZ production.

7 TeV 8 TeV 13 TeV 14 TeV

�LO
W+Z [pb] 7.8± 1.0 9.4± 1.1 18.4± 2.6 20.3± 3.0

�NLO
W+Z [pb] 11.6± 0.8 14.2± 1.0 28.3± 1.9 31.6± 2.3

�LO
W�Z [pb] 4.2± 0.5 5.3± 0.6 11.3± 1.6 12.7± 1.9

�NLO
W�Z [pb] 6.5± 0.5 8.2± 0.6 18.3± 1.4 20.3± 1.4

TABLE III: Same as Table I but for W±Z production. There
is no gluon-fusion production channel for this process.

The total LO and NLO cross-sections, along with their
scale uncertainties, for W

+
W

�, ZZ and W

±
Z produc-

tion at di↵erent center of mass energy LHC runs are pre-
sented in Table I, Table II and Table III, respectively.
The gluon-fusion contribution for W

+
W

� and ZZ pro-
cesses is also shown in these tables. Besides the scale
uncertainties shown in the tables, there are additional
theoretical uncertainties of ⇠ 3–4% from the PDFs. In
Fig. 3, LO and NLO di↵erential cross-sections are shown
for W+

W

�, ZZ and W

+
Z production in the qq̄0 channel

at
p
s = 8 TeV LHC run using the complex scale vari-

ation technique described earlier in this section. This is
to be contrasted with Fig. 1 where traditional approach
(M/2 < µ < 2M) for estimating the scale uncertainties
was followed. We conclude with the following remarks:

• First and foremost, we find that the scale uncer-
tainties are grossly underestimated in Fig. 1, cor-
roborating our argument that variation in the full
complex µ

2-plane must be considered in order to
estimate the true scale uncertainties. As can be
seen in Fig. 3, the e↵ect is striking at LO, with un-
certainties in the range 13–16% in contrast to the
traditional approach which estimate the uncertain-
ties to be 2–4%. This is particularly relevant for
diboson production in gluon-fusion channels which,
although formally NNLO, is absent at lower orders,
thus su↵ering from the same scale uncertainty un-
derestimation issues as LO qq̄

0 channel. Even at
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FIG. 1: Di↵erential cross-sections at LO (blue band) and NLO (red band) are shown for W+W� (left), ZZ (center) and
W±Z (right) production at

p
s = 8 TeV LHC run as obtained from MCFM. The uncertainty bands follow from varying the

renormalization and factorization scales as M/2 < µr = µf < 2M . Contributions from gluon-fusion channels are not included.

in Fig. 1 are obtained by varying the renormalization
scale, set equal to the factorization scale (µ = µ

r

= µ

f

),
as M/2 < µ < 2M .1 Contrary to the naive expectations,
the NLO perturbative corrections with K-factors in the
range 1.4–1.7 [36] far exceed the scale uncertainties. If
this scale uncertainty estimate is to be taken seriously,
the NLO predictions are as much as ⇠ 30� away from
their corresponding LO vales, suggesting that the per-
turbation theory is very poorly converging.

We argue that there is a second source of scale uncer-
tainty which has not been considered in the literature.
If the scale µ is allowed to be complex-valued, there is
an additional parameter that must be considered for esti-
mating the scale uncertainties, namely the complex phase
of µ2. In fact, the logarithms in the higher-order correc-
tions have a branch-cut along the negative real axis, so
that µ

2
< 0 is preferred over µ

2
> 0 to minimize log-

arithms. This is slightly problematic though since the
PDFs are necessarily evaluated at µ2

> 0 leading to large
⇡

2 terms when the logarithms are squared. Summation
of ⇡2 terms has been known for a long time [55–58], and
has been recently applied to the case of Higgs production
at the LHC [59]. ⇡

2 resummation calculations for dibo-
son production have been performed in the context of
threshold resummation for W±

Z and ZZ channels [52],
and jet-veto resummation for W+

W

� channel [50].

The aim of this paper is to show that the variation in
the phase angles of the complex renormalization scales
is essential in order to estimate the true scale uncertain-
ties. Just as the variation in the factorization scales is
governed by the evolution of the PDFs, the variation of
the phase angle will be governed by a di↵erent renor-
malization group (RG) equation, which we obtain using
the formalism of soft-collinear e↵ective theory (SCET)
[60–65] by generalizing the concept of ⇡2

-resummation,
where the phase angle is fixed to (�⇡+0+), to arbitrary
phase angles. While we explicitly focus on heavy vector-

1 Varying the scale by factors of 1/2 and 2 around a central value
is the standard convention followed in the literature.

boson pair production, our scale variation technique can
be extended to any other process once its RG equation
is known.2

This paper is organized as follows. In Section II, us-
ing the SCET construction for diboson production, we
demonstrate that complex-valued scales, not only arise
naturally in radiative corrections, but are also associated
with large perturbative corrections. In Section III, the
large perturbative corrections arising from the complex
phases of the scales are resummed to all orders in per-
turbation theory for W

+
W

�, ZZ and W

±
Z processes,

including gluon-fusion production channels, allowing us
to study scale variation for complex scales. Finally, in
Section IV, our scale variation technique is applied to di-
boson processes, and numerical results for the diboson
production cross-sections are presented for

p
s = 7, 8, 13

and 14 TeV LHC runs.

II. COMPLEX SCALES AND LARGE
PERTURBATIVE CORRECTIONS

Any cross-section measurement at the LHC is char-
acterized by a process-dependent hard-scale and one or
more measurement-kinematics dictated soft-scale(s). For
example, the hard-scale for diboson production is the in-
variant mass of the boson-pair, M and the soft-scale is
⇤
QCD

for an inclusive measurement while jet-p
T

mea-

surements introduce another intermediate soft-scale, pjet
T

.
It is well known that the presence of multiple scales in
the theory can lead to large logarithms of the ratio of the
scales, which can render the perturbation theory invalid.
E↵ective field theories, on the other hand, are adept at
dealing with the problem of multiple scales by renormal-
ization group (RG) evolution to a single scale, e↵ectively
providing a powerful technique to resum the large loga-

2 Our analysis is trivially extended to a class of processes which
involve colorless final states such as Drell-Yan, as these processes
satisfy the same RG equations.

3-4 % increase in central value prediction w.r.t NLO (dynamic scale).    
Fixed scale (set to average diboson mass) NLO in reasonable agreement.  



Results for WW+0 jet 
production at the LHC

Part - IV



Power Counting parameter in SCET :  λ = pTveto/M 
All calculations at LO in SCET power counting.  

SCET resums pieces singular in the λ→0 limit  (i.e.  logn λ) 

 Corrections beyond the singular pieces : Power Corrections       
☛  Add them at the end if the full NLO result is known.          
☛ (Power Corrections) = NLO - (Singular pieces of NLO)

How to count

Power Corrections



αs  Counting in Resummed Perturbation Theory  

 Count   log[ (pTveto)2/M2 ]    as  1/αs  

NLL : Keep terms up to O(1)                                                
NNLL : Keep terms up to O(αs)     

How to count

Evolution 
e[1/αs + 1 + αs + …] 

(2/3 loops)
Matching coefficient  

1+ αs + … (1 loop)

Beam functions  
1+ αs + … (1 loop)

Collinear anomaly 
e[1+ αs + …] (2 loops)

All ingredients already known in the literature.  



NLL and NNLL Results for qq̅➞WW+0 jet

μh2 ≈ -M2 μh2 ≈ M2 

μf ≈ pT
veto 

Scale uncertainty : 
Vary μf and μh by 
factors of 1/2 and 2. 
anti-kT jets (R=0.4)  

π2 Resummation : 
!
 log[ -M2/μh2 ] give 
factors of π2  when 
squared if  μh2 > 0.  
!
Better choice : μh2 ≈ -M2



Consistency Checks and Power Corrections
Recall : SCET resums terms singular in pTveto/M →0 

Power corrections suppressed by powers of pTveto/M. 
Consistency Check : For small pTveto, NNLL cross-section 
expanded to O(αs) should match fixed-order NLO calculations. 

✔ Good agreement between our resummed results expanded 
to O(αs) and MCFM for qq̅➞WW at NLO in the 0-jet bin for 
small pTveto. 

Power Corrections ≲ - 2 %



NNLL+NLO Results
`Consistent’ scheme `Inconsistent’ scheme

`Inconsistent scheme’ : Improved version of NLL by including O(αs) 
terms in the matching coefficient.  
Difference between NLL and NNLL is dominated by two-loop 
effects of jet-veto



Comparison with MC+Parton Showers
( Includes LO gg contribution assuming 100% of them pass jet-veto ) 

WW+0/1/2 jet matched :                                
LO Madgraph5 + Pythia6

MC@NLO + 
Herwig6

Powheg v1 + 
Pythia6

Jet algorithm : anti-kT, R=0.4 
CTEQ6L for LO MC, CT10nlo for NLO MC,  

MSTW08nnlo for NNLL+NLO



Comparison with LHC data
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Since ATLAS uses a veto of pWW
t,veto = 25 GeV, one obtains pDY

t,veto ∼ 15 GeV. We emphasize that, because of this
small pt,veto, the logarithmic terms are expected to dominate over the finite remainder. This correspondence can be
tested with POWHEG by comparing the jet-veto efficiency for the two processes. In order to study the Sudakov region
in a shower-independent way, we perform the comparison at the Les Houches Event (LHE) level in Figure 2, where
pWW
t,veto has been rescaled by MZ/(2MW ) according to Eq. 1. We see that after the rescaling the two efficiencies are
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Fig. 2 Jet-veto efficiency for Z production obtained with the POWHEG BOX and showered with Pythia (v. 6.4.28 Perugia tune 350).

in good agreement in the small transverse momentum region. Not surprisingly, when the Pythia parton shower
and non-perturbative effects (including hadronisation, multiple interactions, pile-up and intrinsic pt simulation) are
also included, the above agreement is partly lost (right plot in Figure 2), since some non-perturbative corrections
and non-logarithmic corrections have a different scaling in pt. Still, we can use the relation between pWW

t,veto and
pDY
t,veto to estimate the impact of higher-order logarithmic corrections on the jet-veto efficiency by looking at the

corresponding quantity in Z-boson production at pt,veto = 15 GeV, shown in Figure 3 (left).
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Fig. 3 Jet-veto efficiency for single Z (left) and H (right) production. The uncertainty band for the resumed predictions is obtained
by varying µR, µF , and the resummation scale Q by a factor of two in either direction while keeping 1/2 < µR/µF < 2. Moreover,
the matching scheme for the jet-veto efficiency is also varied as shown in ref. [16]. The dashed black lines denote the pt,veto values
relevant for the present analysis (see text for more details).

By comparing the pure NLO (blue dashed line) and the NLO+NNLL (green dashed line) calculation of Drell
Yan at this transverse momentum value, one observes a suppression by about 3-4% when NNLL effects are included.
While the magnitude of the impact of the NNLL resummation is found to be similar to that of ref. [25], we observe
a reduction in the jet-veto efficiency rather than an enhancement. This might be due to a different matching scheme
and treatment of higher-order corrections. Furthermore, we observe that POWHEG enhances considerably Sudakov
effects with respect to the analytic resummation when compared to the NLO prediction. On the other hand, it is
also clear from Fig. 3 that the difference with respect to NLO is about -7-8% when the NNLL is matched to the
NNLO result (red solid line). Hence, as far as jet-veto effects are concerned, POWHEG is accidentally close to the
NNLL+NNLO prediction at this veto scale. Therefore, the inclusive cross section extrapolated using POWHEG will
be reasonably in better agreement with the NNLO prediction, rather than with the NLO one.

A further reduction in the fiducial cross section is due to the way the hardest emission is treated in POWHEG,
which was found to slightly change the transverse momentum spectrum of the produced leptons. As example,
we show in Fig. 4 the comparison between the Les Houches events and the pure NLO for the missing transverse

Similar Calculations
[arXiv:1407.4481] Transverse momentum resummation 
Patrick Meade, Harikrishnan Ramani, Mao Zeng  

3-7% reduction in discrepancy  

[ arXiv:1410.4745] NNLL+NNLO extrapolation from Drell-Yan 
Pier Francesco Monni, Giulia Zanderighi



Todo for experimentalists
Jet-veto cross sections at high invariant mass Drell-Yan. 
Cross-sections as a function of pTveto and R (jet radius 
parameter) for diboson and Drell-Yan (at high invariant 
mass).


